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Matrix Multiply: Single Tile Approach

• One block of threads to compute matrix c.

• Each thread computes the value of ci,j.

• Each thread: 

• loads a row of matrix a and a column 
of matrix b.

• performs one multiply and one add for 
each pair of ai,j and bi,j elements.

• stores the result in ci,j.
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#define N 512

#include <stdio.h>

__global__ void matrixMult (int *a, int *b, int *c, int width);

int main() {
 int a[N][N], b[N][N], c[N][N];
 int *dev_a, *dev_b, *dev_c;

 int size = N * N * sizeof(int);

 // initialize matrices a and b 

 cudaMalloc((void **) &dev_a, size);
 cudaMalloc((void **) &dev_b, size);
 cudaMalloc((void **) &dev_c, size);

 cudaMemcpy(dev_a, a, size, cudaMemcpyHostToDevice);
 cudaMemcpy(dev_b, b, size, cudaMemcpyHostToDevice);

 dim3 dimGrid(1, 1);
 dim3 dimBlock(N, N);

 matrixMult<<<dimGrid, dimBlock>>>(dev_a, dev_b, dev_c, N);

 cudaMemcpy(c, dev_c, size, cudaMemcpyDeviceToHost);

 cudaFree(dev_a); cudaFree(dev_b); cudaFree(dev_c);
}

__global__ void matrixMult (int *A, int *B, int *C, int width) 
{
 int k, sum = 0;
 int col = blockDim.x * blockIdx.x + threadIdx.x;
 int row = blockDim.y * blockIdx.y + threadIdx.y;

 if(col < width && row < width) {
  for (k = 0; k < width; k++)
   sum += A[row * width + k] * B[k * width + col];
  C[row * width + col] = sum;
 }
}

Friday, September 23, 11



Matrix Multiplication Using Tiles

• Assume that the dimensions 
(width) of the square matrix is 
a multiple of the tile width.

• Break of matrix C into blocks.

• Each block calculates one 
submatrix (tile).

• Each thread calculates one 
element of the tile.

• Block size equals one tile 
width.
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Small Example

C1,0!A2,0!

A1,1!

A1,0!A0,0!

A0,1!

A3,0!

A2,1!

C0,0!

A3,1! C0,1!

C2,0! C3,0!

B0,3! B1,3!

B1,2!
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B0,2!

C1,1!
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C1,0!C0,0!
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Block(0,0)! Block(1,0)!

Block(1,1)!Block(0,1)!

TILE_WIDTH = 2!
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Matrix Multiply: Tile Approach
#define N 512
#define TILE_WIDTH 16
#include <stdio.h>

__global__ void matrixMult (int *a, int *b, int *c, int width);

int main() {
 int a[N][N], b[N][N], c[N][N];
 int *dev_a, *dev_b, *dev_c;

 int size = N * N * sizeof(int);

 // initialize a and b matrices here

 cudaMalloc((void **) &dev_a, size);
 cudaMalloc((void **) &dev_b, size);
 cudaMalloc((void **) &dev_c, size);

 cudaMemcpy(dev_a, a, size, cudaMemcpyHostToDevice);
 cudaMemcpy(dev_b, b, size, cudaMemcpyHostToDevice);

 dim3 dimBlock(TILE_WIDTH, TILE_WIDTH);
 dim3 dimGrid((int)ceil(N/dimBlock.x), (int)ceil(N/dimBlock.y));

 matrixMult<<<dimGrid, dimBlock>>>(dev_a, dev_b, dev_c, N);

 cudaMemcpy(c, dev_c, size, cudaMemcpyDeviceToHost);

 cudaFree(dev_a); cudaFree(dev_b); cudaFree(dev_c);
}

__global__ void matrixMult(int* A, int* B, int* C, int width)
{
 int k, sum = 0;
 int col = blockIdx.x*TILE_WIDTH + threadIdx.x;
 int row = blockIdx.y*TILE_WIDTH + threadIdx.y;

 if(col < width && row < width) {
  for (int k = 0; k < width; k++)
   sum += A[row * width + k] * B[k * width + col];
  C[row * width + col] = sum;
 }
}

#define N 512

#include <stdio.h>

__global__ void matrixMult (int *a, int *b, int *c, int width);

int main() {
 int a[N][N], b[N][N], c[N][N];
 int *dev_a, *dev_b, *dev_c;

 int size = N * N * sizeof(int);

 // initialize matrices a and b 

 cudaMalloc((void **) &dev_a, size);
 cudaMalloc((void **) &dev_b, size);
 cudaMalloc((void **) &dev_c, size);

 cudaMemcpy(dev_a, a, size, cudaMemcpyHostToDevice);
 cudaMemcpy(dev_b, b, size, cudaMemcpyHostToDevice);

 dim3 dimGrid(1, 1);
 dim3 dimBlock(N, N);

 matrixMult<<<dimGrid, dimBlock>>>(dev_a, dev_b, dev_c, N);

 cudaMemcpy(c, dev_c, size, cudaMemcpyDeviceToHost);

 cudaFree(dev_a); cudaFree(dev_b); cudaFree(dev_c);
}

__global__ void matrixMult (int *A, int *B, int *C, int width) 
{
 int k, sum = 0;
 int col = blockDim.x * blockIdx.x + threadIdx.x;
 int row = blockDim.y * blockIdx.y + threadIdx.y;

 if(col < width && row < width) {
  for (k = 0; k < width; k++)
   sum += A[row * width + k] * B[k * width + col];
  C[row * width + col] = sum;
 }
}
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NVIDIA GPU Memory Hierarchy

• Grids map to GPUs

• Blocks map to the 
MultiProcessors (MP)

• Threads map to Stream 
Processors (SP)

• Warps are groups of 
(32) threads that 
execute simultaneously
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NVIDIA GPU Blocks and Grids

• In CUDA, a block is a group of threads.

• They can execute concurrently or independently, and 
in no particular order.

• Threads can be coordinated somewhat, using the 
_syncthreads() function as a barrier, making all threads 
stop at a certain point in the kernel before moving on 
en mass. 

• In CUDA, a grid is a group of (thread) blocks, with no 
synchronization at all among the blocks.
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CUDA Thread Block

• All threads in a block execute the same kernel 
program.

• Programmer declares block:

• Block size 1 to 512 concurrent threads

• Block shape 1D, 2D, or 3D

• Block dimensions in threads

• Threads have thread id numbers within block

• Thread program uses thread id to select work 
and address shared data

• Threads in the same block share data that can be 
synchronized while doing their share of the work

• Threads in different blocks cannot cooperate

• Each block can execute in any order relative to 
other blocks!

Thread Id #: 
0 1 2 3 …          m    

Kernel 

Block

Friday, September 23, 11



CUDA Thread Block

• Hardware is free to assigns blocks to any processor at 
any time

• A kernel scales across any number of parallel 
processors

• Each block can execute in any order relative to other 
blocks. 

Device 
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Executing Thread Blocks

• Threads are assigned to streaming 
multiprocessors (SMs) in block granularity

• Up to 8 blocks to each SM as resource 
allows

• Each SM can take up to 768 threads

• Could be 256 (threads/block) × 3 
blocks 

• Or 128 (threads/block) × 6 blocks, 
etc.

• Threads run concurrently

• Each SM maintains thread/block id 
numbers

• Each SM manages/schedules thread 
execution

t0 t1 t2 … tm 
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SP 
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SP 
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SM 1 SM 0 
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Thread Scheduling

• Each block is executed as 32-thread warps

• An implementation decision, not part of the 
CUDA programming model.

• Warps are scheduling units in an SM.

• If 3 blocks are assigned to an SM and each block has 
256 threads, how many warps are there in an SM?

• Each block is divided into 256/32 = 8 warps

• There are 8 × 3 = 24 warps 

• Each SM implements zero-overhead warp scheduling

• At any time, only one of the warps is executed 
by an SM

• Warps whose next instruction has its operands 
ready for consumption are eligible for 
execution

• Eligible warps are selected for execution on a 
prioritized scheduling policy.

• All threads in a warp execute the same instruction 
when selected.

…"
t0 t1 t2 … t31 

…"

…"
t0 t1 t2 … t31 

…"Block 1 Warps Block 2 Warps 

SP 
SP 
SP 
SP 

SFU 

SP 
SP 
SP 
SP 

SFU 

Instruction Fetch/Dispatch 
Instruction L1 

Streaming Multiprocessor 

Shared Memory 

…"
t0 t1 t2 … t31 

…"Block 1 Warps 
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Block Granularity Issues

• For matrix multiplication using multiple blocks, should I use 8 × 8, 16 × 16 or 
32 × 32 blocks?

• For 8 × 8, we have 64 threads per block. Since each SM can take up to 768 
threads, there are 12 Blocks. However, each SM can only take up to 8 Blocks, 
only 512 threads will go into each SM!

• For 16 × 16, we have 256 threads per Block. Since each SM can take up to 768 
threads, it can take up to 3 Blocks and achieve full capacity unless other 
resource considerations overrule.

• For 32 × 32, we have 1024 threads per Block. Not even one can fit into an 
SM!
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