
CUDA Advanced Threads

Copyright © 2011 Samuel S. Cho

CSC 391/691: GPU Programming Fall 2011

Friday, September 23, 11

Matrix Multiply: Single Tile Approach

• One block of threads to compute matrix c.

• Each thread computes the value of ci,j.

• Each thread:

• loads a row of matrix a and a column
of matrix b.

• performs one multiply and one add for
each pair of ai,j and bi,j elements.

• stores the result in ci,j.

a

b

c

#define N 512

#include <stdio.h>

__global__ void matrixMult (int *a, int *b, int *c, int width);

int main() {
 int a[N][N], b[N][N], c[N][N];
 int *dev_a, *dev_b, *dev_c;

 int size = N * N * sizeof(int);

 // initialize matrices a and b

 cudaMalloc((void **) &dev_a, size);
 cudaMalloc((void **) &dev_b, size);
 cudaMalloc((void **) &dev_c, size);

 cudaMemcpy(dev_a, a, size, cudaMemcpyHostToDevice);
 cudaMemcpy(dev_b, b, size, cudaMemcpyHostToDevice);

 dim3 dimGrid(1, 1);
 dim3 dimBlock(N, N);

 matrixMult<<<dimGrid, dimBlock>>>(dev_a, dev_b, dev_c, N);

 cudaMemcpy(c, dev_c, size, cudaMemcpyDeviceToHost);

 cudaFree(dev_a); cudaFree(dev_b); cudaFree(dev_c);
}

__global__ void matrixMult (int *A, int *B, int *C, int width)
{
 int k, sum = 0;
 int col = blockDim.x * blockIdx.x + threadIdx.x;
 int row = blockDim.y * blockIdx.y + threadIdx.y;

 if(col < width && row < width) {
 for (k = 0; k < width; k++)
 sum += A[row * width + k] * B[k * width + col];
 C[row * width + col] = sum;
 }
}

Friday, September 23, 11

Matrix Multiplication Using Tiles

• Assume that the dimensions
(width) of the square matrix is
a multiple of the tile width.

• Break of matrix C into blocks.

• Each block calculates one
submatrix (tile).

• Each thread calculates one
element of the tile.

• Block size equals one tile
width.

A

C

B

i

j

width

w
id
th

TILE_WIDTH2

1

0

0 1 2

0 1 2

2

1
0

bx

by

tx

ty

Friday, September 23, 11

Small Example

C1,0!A2,0!

A1,1!

A1,0!A0,0!

A0,1!

A3,0!

A2,1!

C0,0!

A3,1! C0,1!

C2,0! C3,0!

B0,3! B1,3!

B1,2!

B1,1!

B1,0!B0,0!

B0,1!

B0,2!

C1,1!

C0,2! C2,2! C3,2!C1,2!

C3,1!C2,1!

C0,3! C2,3! C3,3!C1,3!

C1,0!C0,0!

C0,1!

C2,0! C3,0!

C1,1!

C0,2! C2,2! C3,2!C1,2!

C3,1!C2,1!

C0,3! C2,3! C3,3!C1,3!

Block(0,0)! Block(1,0)!

Block(1,1)!Block(0,1)!

TILE_WIDTH = 2!

Friday, September 23, 11

Matrix Multiply: Tile Approach
#define N 512
#define TILE_WIDTH 16
#include <stdio.h>

__global__ void matrixMult (int *a, int *b, int *c, int width);

int main() {
 int a[N][N], b[N][N], c[N][N];
 int *dev_a, *dev_b, *dev_c;

 int size = N * N * sizeof(int);

 // initialize a and b matrices here

 cudaMalloc((void **) &dev_a, size);
 cudaMalloc((void **) &dev_b, size);
 cudaMalloc((void **) &dev_c, size);

 cudaMemcpy(dev_a, a, size, cudaMemcpyHostToDevice);
 cudaMemcpy(dev_b, b, size, cudaMemcpyHostToDevice);

 dim3 dimBlock(TILE_WIDTH, TILE_WIDTH);
 dim3 dimGrid((int)ceil(N/dimBlock.x), (int)ceil(N/dimBlock.y));

 matrixMult<<<dimGrid, dimBlock>>>(dev_a, dev_b, dev_c, N);

 cudaMemcpy(c, dev_c, size, cudaMemcpyDeviceToHost);

 cudaFree(dev_a); cudaFree(dev_b); cudaFree(dev_c);
}

__global__ void matrixMult(int* A, int* B, int* C, int width)
{
 int k, sum = 0;
 int col = blockIdx.x*TILE_WIDTH + threadIdx.x;
 int row = blockIdx.y*TILE_WIDTH + threadIdx.y;

 if(col < width && row < width) {
 for (int k = 0; k < width; k++)
 sum += A[row * width + k] * B[k * width + col];
 C[row * width + col] = sum;
 }
}

#define N 512

#include <stdio.h>

__global__ void matrixMult (int *a, int *b, int *c, int width);

int main() {
 int a[N][N], b[N][N], c[N][N];
 int *dev_a, *dev_b, *dev_c;

 int size = N * N * sizeof(int);

 // initialize matrices a and b

 cudaMalloc((void **) &dev_a, size);
 cudaMalloc((void **) &dev_b, size);
 cudaMalloc((void **) &dev_c, size);

 cudaMemcpy(dev_a, a, size, cudaMemcpyHostToDevice);
 cudaMemcpy(dev_b, b, size, cudaMemcpyHostToDevice);

 dim3 dimGrid(1, 1);
 dim3 dimBlock(N, N);

 matrixMult<<<dimGrid, dimBlock>>>(dev_a, dev_b, dev_c, N);

 cudaMemcpy(c, dev_c, size, cudaMemcpyDeviceToHost);

 cudaFree(dev_a); cudaFree(dev_b); cudaFree(dev_c);
}

__global__ void matrixMult (int *A, int *B, int *C, int width)
{
 int k, sum = 0;
 int col = blockDim.x * blockIdx.x + threadIdx.x;
 int row = blockDim.y * blockIdx.y + threadIdx.y;

 if(col < width && row < width) {
 for (k = 0; k < width; k++)
 sum += A[row * width + k] * B[k * width + col];
 C[row * width + col] = sum;
 }
}

Friday, September 23, 11

NVIDIA GPU Memory Hierarchy

• Grids map to GPUs

• Blocks map to the
MultiProcessors (MP)

• Threads map to Stream
Processors (SP)

• Warps are groups of
(32) threads that
execute simultaneously

Friday, September 23, 11

NVIDIA GPU Blocks and Grids

• In CUDA, a block is a group of threads.

• They can execute concurrently or independently, and
in no particular order.

• Threads can be coordinated somewhat, using the
_syncthreads() function as a barrier, making all threads
stop at a certain point in the kernel before moving on
en mass.

• In CUDA, a grid is a group of (thread) blocks, with no
synchronization at all among the blocks.

Friday, September 23, 11

CUDA Thread Block

• All threads in a block execute the same kernel
program.

• Programmer declares block:

• Block size 1 to 512 concurrent threads

• Block shape 1D, 2D, or 3D

• Block dimensions in threads

• Threads have thread id numbers within block

• Thread program uses thread id to select work
and address shared data

• Threads in the same block share data that can be
synchronized while doing their share of the work

• Threads in different blocks cannot cooperate

• Each block can execute in any order relative to
other blocks!

Thread Id #:
0 1 2 3 … m

Kernel

Block

Friday, September 23, 11

CUDA Thread Block

• Hardware is free to assigns blocks to any processor at
any time

• A kernel scales across any number of parallel
processors

• Each block can execute in any order relative to other
blocks.

Device

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Device

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7 time time

Friday, September 23, 11

Executing Thread Blocks

• Threads are assigned to streaming
multiprocessors (SMs) in block granularity

• Up to 8 blocks to each SM as resource
allows

• Each SM can take up to 768 threads

• Could be 256 (threads/block) × 3
blocks

• Or 128 (threads/block) × 6 blocks,
etc.

• Threads run concurrently

• Each SM maintains thread/block id
numbers

• Each SM manages/schedules thread
execution

t0 t1 t2 … tm

Blocks

SP

Shared
Memory

MT IU

SP

Shared
Memory

MT IU

t0 t1 t2 … tm

Blocks

SM 1 SM 0

Friday, September 23, 11

Thread Scheduling

• Each block is executed as 32-thread warps

• An implementation decision, not part of the
CUDA programming model.

• Warps are scheduling units in an SM.

• If 3 blocks are assigned to an SM and each block has
256 threads, how many warps are there in an SM?

• Each block is divided into 256/32 = 8 warps

• There are 8 × 3 = 24 warps

• Each SM implements zero-overhead warp scheduling

• At any time, only one of the warps is executed
by an SM

• Warps whose next instruction has its operands
ready for consumption are eligible for
execution

• Eligible warps are selected for execution on a
prioritized scheduling policy.

• All threads in a warp execute the same instruction
when selected.

…"
t0 t1 t2 … t31

…"

…"
t0 t1 t2 … t31

…"Block 1 Warps Block 2 Warps

SP
SP
SP
SP

SFU

SP
SP
SP
SP

SFU

Instruction Fetch/Dispatch
Instruction L1

Streaming Multiprocessor

Shared Memory

…"
t0 t1 t2 … t31

…"Block 1 Warps

Friday, September 23, 11

Block Granularity Issues

• For matrix multiplication using multiple blocks, should I use 8 × 8, 16 × 16 or
32 × 32 blocks?

• For 8 × 8, we have 64 threads per block. Since each SM can take up to 768
threads, there are 12 Blocks. However, each SM can only take up to 8 Blocks,
only 512 threads will go into each SM!

• For 16 × 16, we have 256 threads per Block. Since each SM can take up to 768
threads, it can take up to 3 Blocks and achieve full capacity unless other
resource considerations overrule.

• For 32 × 32, we have 1024 threads per Block. Not even one can fit into an
SM!

Friday, September 23, 11

